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In this article we study computational issues related to a nonlinear Galerkin type
splitting (NLG) of partial differential equations in the case of a Fourier collocation
discretization. We present an extension of the method to two-dimensional problems
and show that the sole separation of modes in NLG can bring precision and compu-
tational costs advantages to the standard collocation scheme. Numerical experiments
with the Burgers and a reaction-diffusion equation for 1 and 2 dimensions are also
shown. c© 1998 Academic Press

1. INTRODUCTION

In this article we introduce a pseudospectral Fourier collocation splitting for two di-
mensional partial differential equations aimed at reducing the cost of computing spatial
derivatives. The splitting was originally motivated by the Nonlinear Galerkin Method and
we will therefore refer to it as NLG.

We extend the results of a previous article [3] on the one dimensional case to two space
dimensions and point out the relevant numerical aspects of both cases in a comparison with
the standard collocation method (SCM). The extension to two dimensional problems of the
Chebyshev collocation case as in [4] is the subject of a forthcoming work.

The basic idea in the Nonlinear Galerkin method (and in the theory of inertial manifolds)
is the decomposition of the unknownu into its large scale and small scale components,y
andz:

u = y + z.

In the case of a Fourier expansion it is clear thaty corresponds to the low modes andz to
the high modes (see [3]).
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When a collocation method is used (as opposed to a Galerkin spectral method) we need
to find a decomposition of the kind above in the physical space. In one space dimension
such a decomposition is accomplished via the splitting of the fine grid into two coarse
grids based on half of the points. In the case of two space dimensions, the fine grid is split
into four coarse grids each one having one fourth of the points of the fine grid. The high
modes component is decomposed into three componentsz1, z2, andz3. Each component
can be represented by any one of the coarse grids, allowing most of the computations to be
performed using only one fourth of the number of points of the original fine grid. This will
result in a significant reduction of the number of operations necessary to calculate spatial
derivatives. The treatment of nonlinear terms, however, requires a re-projection of all modes
on the fine grid at the end of each iteration. In certain cases like, for example, the Burgers
equation, this extra projection may compensate the advantage in computational costs of
NLG when treating derivatives and one may end up with the same number of operations
per iteration for NLG and SCM. However, as shown in Section 4, this is not the case when
NLG is applied to equations with a more complicated structure and a higher number of
derivatives.

Numerical results show how the NLG splitting produces an approximate solution which
is as accurate as the one obtained with a SCM based on the fine grid. Other numerical
and theoretical studies have been done to compare various versions of NLG methods and,
more recently, the Postprocessed Galerkin method to a standard Galerkin or collocation
approximation and different conclusions have been reached regarding the accuracy and
efficiency of the methods, see, for example, [7–14] and references therein. It should be
pointed out that in all of those cases the comparison was with a Galerkin or collocation
scheme based on the low modes or coarse grid only.

Several numerical results in the one dimensional case suggest the choice of a NLG
splitting of the equation into high and low modes that keeps all the linear and nonlinear
terms, without disregarding any. Also in light of this fact we believe that the right comparison
is with a SCM based on the fine grid.

The main focus of this article is not the complete study of the computational efficiency
of the NLG. Further aspects of this issue are addressed in a forthcoming article (see [2])
where we show how the efficiency of the NLG approach can be significantly improved
by considering different time integration schemes for the low modes and the high modes
equations. By introducing a modified Runge–Kutta scheme for the high modes equation,
one can choose a larger time step reducing the overall computational cost of the algorithm.

The article is organized as follows. In Section 2 we define the grids and the related
spaces of functions and associated projections that will be used throughout the article. In
Section 3 we present the decomposition into high and low modes and the construction of
the interpolating polynomials. In Section 4 we apply the NLG to various equations in one
and two space dimensions and discuss the computational cost of the method. Numerical
results comparing NLG and the SCM are shown in Section 5.

2. PRELIMINARIES

Throughout this article we will use the following spaces of trigonometrical polynomials.
Let M = 2N + 1; we define

UN = {eikx; |k| ≤ N}, VM = {sin j x, coskx; 1 ≤ j ≤ M − 1, 0 ≤ k ≤ M},
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of dimensions 2N + 1 and 2M = 2(2N + 1), respectively. We also define the spaceU M
N ,

the orthogonal complement ofUN in VM .
A generic functionf (x) can be projected onVM by interpolation on the following set of

points,

xM
j = π j

M
, 0 ≤ j ≤ 2M − 1,

and to project onUN we can use either one of the set of points

ξ N
j = 2π j

2N + 1
, 0 ≤ j ≤ 2N,

ηN
j = (2 j + 1)π

2N + 1
, 0 ≤ j ≤ 2N.

For details on the construction and approximating properties of the projection operators
corresponding to these grids we refer the reader to [3].

The 2-dimensional trigonometrical spaces that follow are formed by cross products of
VM , UN , andU M

N :

UN N = UN ×UN, UN M = UN ×U M
N , UM N = U M

N ×UN, UM M = U M
N ×U M

N

(1)

and

VM M = VM × VM .

Note thatVM M =UN N ⊕ UN M ⊕ UM N ⊕ UM M .
A generic functionf (x, y) in VM M can be decomposed in 4 componentsf = w + z1 +

z2 + z3, each one belonging to a different space above, i.e.,

w ∈ UN N, z1 ∈ UN M, z2 ∈ UM N, z3 ∈ UM M .

We can represent these spaces by means of rectangular areas in the space of the
2-dimensional wave numberk = (k1, k2) as it is shown in Fig. 1. Note that all four spaces
in (1) occupy one fourth of the area occupied byVM M in Fig. 1. This is an indication that
we just need one fourth the number of points to represent each space in (1).

We definek as alow mode if |k1|, |k2| ≤ N, ahigh mode if |k1|, |k2| > N, and amixed
mode otherwise.

To project a functionf (x, y) onto the 2-dimensional spaces above we need to define the
following 2-dimensional grids, which are cross products of the grids previously defined,

aN
i, j = (

ξ N
i , ξ N

j

)
, bN

i, j = (
ηN

i , ηN
j

)
, cN

i, j = (
ξ N

i , ηN
j

)
, dN

i, j = (
ηN

i , ξ N
j

)
, (2)

and to project onto the spaceVM M = VM × VM we use the fine grid

pM
i, j = (

xM
i , xM

j

)
.

Figure 2 shows the spatial disposition of the several grids on thex − y plane.
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FIG. 1. The spacesUN N, UN M, UM N , andUM M .

Note that {
pM

i, j

} = {
aN

i, j

} ∪ {
bN

i, j

} ∪ {
cN

i, j

} ∪ {
dN

i, j

};
indeed, we have

pM
2i,2 j = aN

i, j , pM
2i +1,2 j +1 = bN

i, j , pM
2i +1,2 j = cN

i, j , pM
2i,2 j +1 = dN

i, j .

In order to construct projection operators that interpolate a functionf (x, y) at each of
the grids mentioned above, let us consider the Dirichlet kernels

H2N+1(x, y) = 1

M

N∑
k=−N

eik(x−y), (3)

FIG. 2. The 2D grids for NLG.
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and

H2M(x, y) = 1

2M

M∑
k=−M

1

cM
k

eik(x−y), (4)

wherecM
k = 1 + δ|k|,M . It is well known that

H2N+1
(
ξ N

i , ξ N
j

) = H2N+1
(
ηN

i , ηN
j

) = δi, j (5)

and

H2M
(
xM

i , xM
j

) = δi, j . (6)

DEFINITION 2.1. Let f (x, y) be a function defined in [0, 2π ]2. We define the trigono-
metric polynomialQa

N f as

Qa
N f (x, y) =

2N∑
j,l=0

f
(
aN

i, j

)
H2N+1

(
x, ξ N

j

)
H2N+1

(
y, ξ N

l

)

=
2N∑

j,l=0

f
(
ξ N

j , ξ N
l

)
H2N+1

(
x, ξ N

j

)
H2N+1

(
y, ξ N

l

)
.

Equation (5) shows thatQa
N f interpolates the functionf (x, y) at the collocation grid

{aN
i, j }, i.e.,

Qa
N f

(
aN

i, j

) = f
(
aN

i, j

)
, 0 ≤ i, j ≤ 2N.

In a similar way we define the trigonometric polynomialsQb
N f, Qc

N f , and Qd
N f that

interpolatef (x, y) at the grids{bN
i, j }, {cN

i, j }, and{dN
i, j }, respectively,

Qb
N f (x, y) =

2N∑
j,l=0

f
(
ηN

j , ηN
l

)
H2N+1

(
x, ηN

j

)
H2N+1

(
y, ηN

l

)
, (7)

Qc
N f (x, y) =

2N∑
j,l=0

f
(
ξ N

j , ηN
l

)
H2N+1

(
x, ξ N

j

)
H2N+1

(
y, ηN

l

)
, (8)

Qd
N f (x, y) =

2N∑
j,l=0

f
(
ηN

j , ξ N
l

)
H2N+1

(
x, ηN

j

)
H2N+1

(
y, ξ N

l

)
. (9)

Finally, we define the trigonometric polynomialQp
M f interpolating at the fine grid{pM

i, j }:
DEFINITION 2.2. Let f (x, y) be a function defined in [0, 2π ]2. We define the trigono-

metric polynomialQp
M f as

Qp
M f (x, y) =

2M−1∑
j,l=0

f
(
xM

j , xM
l

)
H M

(
x, xM

j

)
H M

(
y, xM

l

)
.

It is easy to show that the polynomialQp
M f interpolatesf (x, y) at the grid{xM

i }:

Qp
M f

(
xM

i , xM
j

) = f
(
xM

i , xM
j

)
, 0 ≤ i, j ≤ 2M − 1.
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We can give alternate representations of the polynomials above by using (3) and (4),

Qa
N f (x, y) =

N∑
k1,k2=−N

f̂
N
k1,k2

ei (k1x+k2y), (10)

where

f̂
a
k1,k2

= 1

M2

2N∑
j,l=0

f
(
ξ N

j , ξ N
l

)
e−i sk1ξ

N
j +k2ξ

N
l d; (11)

and

Qp
M f (x, y) =

M∑
k1,k2=−M

f̂
M
k1,k2

ei (k1x+k2y), (12)

where

f̂
p
k1,k2

= 1

4M2cM
k1,k2

2M−1∑
j,l=0

f
(
xM

j , xM
l

)
e−i sk1xM

j +k2xM
l d

, (13)

andcM
k1,k2

= cM
k1

cM
k2

= (1 + δ|k1|,M)(1 + δ|k2|,M).
The alternative representations for the other polynomialsQb

N, Qc
N , andQd

N are analogous
to the one in (10) and (11).

3. HIGH AND LOW MODES DECOMPOSITION

In this section we construct the collocation operatorsJN N, GN M, GM N, andGM M that
project f (x, y) onto the spacesUN N,UN M,UM N , andUM M , respectively. We will then
prove that each of these quantities can be expressed in terms of its values at only one of the
coarse grids in Fig. 2.

THEOREM3.1. Let M= 2N + 1 and Qp
M , Qa

N, Qb
N, Qc

N, Qd
N be defined as in(10) and

(12). We set

JN N = Qa
N + Qb

N + Qc
N + Qd

N

4
, (14)

GN M = Qa
N + Qd

N − Qb
N − Qc

N

4
, (15)

GM N = Qa
N + Qc

N − Qb
N − Qd

N

4
, (16)

GM M = Qp
M − JN N − GN M − GM N . (17)

Then any function f∈ VM can be written uniquely as

f = JN N f + GN M f + GM N f + GM M f,

where JN N f ∈ UN N, GN M f ∈ UN M, GM N f ∈ UM N, and GM M f ∈ UM M.
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Proof. We start by showing that the low modes(|k1|, |k2| ≤ N) of f andJN N f are the
same. We will use formula (13) and recall that for these values ofk1, k2 we havecM

k1,k2
= 1,

f̂
M
k1,k2

= 1

4M2

2M−1∑
j,l=0

f
(
xN

j , xN
l

)
e−i sk1xN

j +k2xN
l d (18)

= 1

4M2

(
2N∑

j,l=0

f
(
aN

i, j

)
e−i k·aN

j,l +
2N∑

j,l=0

f
(
bN

i, j

)
e−i k·bN

j,l +
2N∑

j,l=0

f
(
cN

i, j

)
e−i k·cN

j,l

+
2N∑

j,l=0

f
(
dN

i, j

)
e−i k·dN

j,l

)
. (19)

Therefore, using (11) and the corresponding formulas for gridsb, c, andd,

f̂
M
k1,k2

= 1

4

(
f̂

a
k1,k2

+ f̂
b
k1,k2

+ f̂
c
k1,k2

+ f̂
d
k1,k2

)
.

It remains to show that the components off in UN M andUM N areGN M f andGM N f ,
respectively. As we can see from Fig. 2, the components off in UN M are of the form

f̂
p
k1,2N+1−k2

, k1 = −N, . . . , N, k2 = 0, . . . , N

and

f̂
p
k1,k2−(2N+1), k1 = −N, . . . , N, k2 = 0, . . . , N.

We will consider the first case and writêf
p
k1,2N+1−k2

as

f̂
p
k1,2N+1−k2

= 1

4M2

(
2N∑

j,l=0

f
(
aN

i, j

)
e−i sk1ξ

N
j +(2N+1−k2)ξ

N
l d +

2N∑
j,l=0

f
(
dN

i, j

)
e−i sk1η

N
j +(2N+1−k2)ξ

N
l d

+
2N∑

j,l=0

f
(
bN

i, j

)
e−i sk1η

N
j +(2N+1−k2)η

N
l d +

2N∑
j,l=0

f
(
cN

i, j

)
e−i sk1ξ

N
j +(2N+1−k2)η

N
l d

)
.

Using the identities

e±i (2N+1)ξ N
j = 1, e±i (2N+1)ηN

j = −1 (20)

we have

f̂
p
k1,2N+1−k2

= 1

4M2

(
2N∑

j,l=0

f
(
aN

i, j

)
e−i sk1ξ

N
j −k2ξ

N
l d +

2N∑
j,l=0

f
(
dN

i, j

)
e−i sk1η

N
j −k2ξ

N
l d

−
2N∑

j,l=0

f
(
bN

i, j

)
e−i sk1η

N
j −k2η

N
l d −

2N∑
j,l=0

f
(
cN

i, j

)
e−i sk1ξ

N
j −k2η

N
l d

)

= 1

4

(
f̂

a
k1,−k2

+ f̂
d
k1,−k2

− f̂
b
k1,−k2

− f̂
c
k1,−k2

)
.
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The proof for f̂
p
k1,k2−(2N+1) is analogous to this one and so is the proof for the component

of f in UMN.
Our goal is to show that we can express all the components off in the above decom-

position by using only the values off at the collocation gridaN
i, j . The next lemma will

give an explicit formula for the Fourier coefficients off in terms of its collocation values
f (aN

i, j ). We will illustrate the details of the proof only in the casef ∈UM N , where all modes
involved are a combination of a high mode in the first variable and a low mode in the second
variable (see Fig. 2). The same result can be shown for the other components using a similar
argument.

LEMMA 3.1. Consider a function f(x, y) in UM N of the form

f (x, y) =
N+1∑
k1=1

N∑
k2=0

(
f̂

p
N+k1,k2

ei (N+k1,k2)·z + f̂
p
N+k1,−k2

ei (N+k1,−k2)·z

+ f̂
p
−(N+k1),k2

ei (−(N+k1),k2)·z + f̂
p
−(N+k1),−k2

ei (−(N+k1),−k2)·z),
where f̂

p
k1,k2

is given in(13) andz= (x, y). Defining the new Fourier coefficients,

Fk1,k2 = f̂
p
k1−(2N+1),k2

, Fk1,−k2 = f̂
p
k1−(2N+1),−k2

, (21)

F−k1,k2 = f̂
p
2N+1−k1,k2

, F−k1,−k2 = f̂
p
2N+1−k1,−k2

, (22)

we can rewrite f(x, y) in a simpler form,

f (x, y) =
N∑

k=0

Fk1,k2e
i (k1−(2N+1),k2)·z + F−k1,−k2e

i ((2N+1)−k1,−k2)·z

+ Fk1,−k2e
i (k1−(2N+1),−k2)·z + F−k1,k2e

i (2N+1−k1,k2)·z, (23)

where the coefficients Fk are given by the formula

Fk = 1

M2

2N∑
j,l=0

f
(
aN

j,l

)e−i k·aN
j,l

β0
k1

, (24)

whereβ0
k1

= 1 + δk1,0 andk = (k1, k2).

Proof. First, we expressf (aN
j,l ) in terms of the coefficientsFk above. So, insertingaN

j,l

into (23) and using the identities in (20) we have

f
(
aN

j,l

) =
N∑

k=−N

β0
k1

Fkei k·aN
j,l , (25)

with N = (N, N).
Now we multiply this equation bye−i q·aN

j,l , whereq = (q1, q2), |q1|, |q2| ≤ N and sum
over the grid{aN

j,l } to obtain

2N∑
j,l=0

f
(
aN

j,l

)
e−i q·aN

j,l =
N∑

k=−N

β0
k1

Fk

2N∑
j,l=0

ei (k−q)·aN
j,l .
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But, since

2N∑
j,l=0

ei (k−q)·aN
j,l =

{
M2, k = q
0, otherwise,

we find
2N∑

j,l=0

f
(
aN

j,l

)
e−i q·aN

j,l = β0
q1

FqM2.

The next lemma shows how the Lagrange interpolation operatorGN M corresponds to
formula Qa

N defined before.

LEMMA 3.2. Let f(x, y) ∈ UM N be as in(23); then we can represent f by

f (x, y) =
2N∑

j,l=0

f
(
aN

j,l

)
hM N

j,l (x, y), (26)

where

hM N
j,l (x, y) = (

2H2M
(
x, ξ N

j

) − H2N+1
(
x, ξ N

j

))
H2N+1

(
y, ξ N

l

)
. (27)

Proof. As in the previous lemma, we will use the expression with the Fourier coefficients
of f ,

f (x, y) =
N∑

k=0

Fk1,k2e
i (k1−(2N+1),k2)·z + F−k1,−k2e

i ((2N+1)−k1,−k2)·z

+ Fk1,−k2e
i (k1−(2N+1),−k2)·z + F−k1,k2e

i (2N+1−k1,k2)·z (28)

with the Fk ’s defined as in (21) and (22). Substituting into (28) the values for the Fourier
coefficients in

f (x, y) = 1

M2

N∑
k=0

(
ei (k1−(2N+1),k2)·z

2N∑
j,l=0

f
(
aN

j,l

)
ei k·aN

j,l

+ ei (2N+1−k1,−k2)·z
2N∑

j,l=0

f
(
aN

j,l

)
e−i k·aN

j,l

+ ei (k1−(2N+1),−k2)·z
2N∑

j,l=0

f
(
aN

j,l

)
ei (k1,−k2)·aN

j,l

+ ei (2N+1−k1),k2)·z
2N∑

j,l=0

f
(
aN

j,l

)
e−i (k1,−k2)·aN

j,l

)
,

and using (20) we obtain

f (x, y) = 1

M2

2N∑
j,l=0

f
(
aN

j,l

)( N∑
k=0

ei (k1−(2N+1),k2)·sz−aN
j,l d +

N∑
k=0

ei (2N+1−k1,−k2)·sz−aN
j,l d

+
N∑

k=0

ei (k1−(2N+1),−k2)·sz−aN
j,l d +

N∑
k=0

ei (2N+1−k1),k2)·sz−aN
j,l d

)
.
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Now, we separate the sums ink1 andk2 and rearrange the summation ink1 as

f (x, y) = 1

M2

2N∑
j,l=0

f
(
aN

j,l

) ∑
N+1≤|N+k1|≤M

ei (N+k1)sx−ξ N
j d

βN
k1

N∑
k2=−N

eik2sy−ξ N
l d.

It is easily seen from the definitions of the Dirichlet kernelsH2M(x, y) andH2N+1(x, y),
(3) and (4), that

1

M

∑
N+1≤|N+k1|≤M

ei (N+k1)sx−ξ N
j d

βN
k1

= 2H2M
(
x, ξ N

j

) − H2N+1
(
x, ξ N

j

)
.

This concludes the proof of the lemma.

Remark 3.1. Given a functionf ∈ UM N , its derivative with respect tox can be computed
by using the interpolation formula (23),

∂

∂x
f (x, y) =

2N∑
j,l=0

f
(
aN

j,l

) ∂

∂x
hM N

j,l (x, y),

where

∂

∂x
hM N

j,l (x, y) = ∂

∂x

[
2H2M

(
x, ξ N

j

) − H2N+1
(
x, ξ N

j

)]
H2N+1

(
y, ξ N

l

)
.

4. COMPUTATIONAL COSTS COMPARISON

In this section we compare the effectiveness of the NLG splitting with respect to the
SCM in the case of spatial dimensions 1 and 2 when considering explicit integration in
time. We use the same time step for both methods, therefore it is only necessary to compare
their respective computational cost per iteration. As it was said before the use of distinct
time steps for the high and low modes is the subject of a forthcoming paper (see [2]). All
derivatives below are carried out by matrix-vector multiplications.

In the case of one space dimension we will consider the Burgers equation, a reaction-
diffusion equation, and the Kuramoto–Shivashinsky equation. The details of the construc-
tion and approximating properties of the projection operatorsJN and GM can be found
in [3].

Consider the Burgers equationut − νuxx + 1

2
(u2)x = f, x ∈ (0, 2π), t > 0,

u(0, t) = u(2π, t), t > 0.

(29)

The standard collocation scheme is based on the fine grid which contains 2M points. At
each iteration we have to perform two derivatives, i.e., two matrix-vector multiplications.
Therefore the number of operations per iteration necessary to evaluate the derivatives is
2(2M)2 = 8M2. SinceM = 2N + 1, the total cost per iteration for the SCM is 8M2 ≈
8(2N)2 = 32N2 operations per time step.
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In the case of NLG, we solve the system
yt − νyxx + 1

2

∂

∂x
JN(y + z)2 = JN f,

zt − νzxx + 1

2

∂

∂x
GM(y + z)2 = GM f.

(30)

The projectionsJN andGM are carried out on the gridξ N
j with only 2N points, there-

fore each derivative takes(2N)2 operations and the cost of computingyxx and zxx is
2(2N)2 = 8N2. The nonlinear part of each equation is evaluated in the following way. First,
we decompose(y + z)2 in high and low modes by doing

JN(y + z)2
(
ξ N

j

) = 1

2
(QN + Q̃N)(y + z)2

(
ξ N

j

)
= 1

2

[
(y + z)2

(
ξ N

j

) + Q̃N(y + z)2
(
ξ N

j

)]
.

For this step, we only need to computeQ̃N(y + z)2
(
ξ N

j

)
. This quantity is also used in

the computation of the high modes

GM(y + z)2
(
ξ N

j

) = (IM − JN)(y + z)2
(
ξ N

j

)
= (y + z)2

(
ξ N

j

) − 1

2

[
(y + z)2

(
ξ N

j

) + Q̃N(y + z)2
(
ξ N

j

)]
= 1

2

[
(y + z)2

(
ξ N

j

) − Q̃N(y + z)2
(
ξ N

j

)]
.

The derivatives of the nonlinear terms are carried out by 2 matrix-vector multiplications
and using the identities

∂

∂x
JN(y + z)2

(
ξ N

j

) = ∂

∂x
QN

(
JN(y + z)2

(
ξ N

j

))
, (31)

∂

∂x
GM(y + z)2

(
ξ N

j

) =
2N∑
j =0

GM(y + z)2
(
ξ N

j

) ∂

∂x
h j

(
ξ N

j

)
. (32)

This takes 2(2N)2 = 8N2 more operations, bringing the treatment of the nonlinear terms
to 12N2 operations per iteration.

At the end of each iteration we have to projecty andz on the other coarse gridηN
j , via

the operatorQN , yielding another 8N2 operations. The total cost per iteration for the NLG
is 28N2 operations. Using the same time step for both methods we save 4N2 operations per
iteration, i.e., 12% of the operations when using NLG.

Remark 4.1. Starting with the values ofy andz at the fine grid, the NLG requires fewer
operations than SCM to evaluate the linear and nonlinear derivatives at one of the coarse
grids. The projection of they andz on the other coarse grid at the end of each iteration
involves an additional 12N2 operations. However, this cost is fixed and does not depend on
the equation. This indicates that the overall gain due to the NLG splitting will increase with
the number of derivatives in the specific equation.
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For example, in the case of the Kuramoto–Shivashinsky equationut + ν
∂4

∂x4
u + ∂2

∂x2
u + uux = f, x ∈ (0, 2π), t > 0,

u(0, t) = u(2π, t), t > 0,

(33)

the NLG splitting in high and low modes costs less, since we have one more derivative
than in (29). The total number of operations per iteration for the Kuramoto–Shivashinsky
equation is 40N2 for NLG against the 48N2 for SCM.

Let us consider the Reaction-Diffusion equation{
ut − νuxx + u3 − u = f, x ∈ (0, 2π), t > 0,

u(0, t) = u(2π, t), t > 0,
(34)

and the corresponding NLG splitting,
yt − νyxx + ∂

∂x
JN((y + z)3 − (y + z)) = JN f,

zt − νzxx + ∂

∂x
GM((y + z)3 − (y + z)) = GM f.

(35)

Since the nonlinear part does not involve any derivatives, in the SCM we can just evaluate
the terms at the grid points. On the other hand, for the NLG we still need to separate the
nonlinear term in high and low modes and re-project, making this approach computationally
more expensive.

The test problem in spatial dimension two is the following scalar Burgers-like equation

ut − νuxx − νuyy + (u2)x + (u2)y = f, (x, y) ∈ (0, 2π)2, t > 0 (36)

with periodic boundary conditions.
This equation is a simple extension of the Burgers equation to 2 dimensions and it was

chosen due to its simplicity and because it contains the important features of our analysis,
which are the linear and nonlinear terms. Again, we will compare a NLG scheme with the
2D SCM based on the fine grid. Each directional derivative involves(2M)2 × 2M = 8M3

operations. Since we have 4 derivatives, we have a total cost of 32M3 operations per itera-
tion, or 32M3 ≈ 32(2N)3 = 256N3 operations per iteration.

For the NLG scheme, we split Eq. (36) in four equations, each one containing respectively
the low modew (not calledy anymore due to they direction), the mixed modesz1, z2, and
the pure high modez3. This splitting results from applying the operatorsJN N, GN M, GM N ,
andGM M to (36) leading to the following system of equations:

wt − νwxx − νwyy + JN

(
∂

∂x
+ ∂

∂y

)
(w + z1 + z2 + z3)2 = JN f

z1
t − νz1

xx − νz1
yy + GN M

(
∂

∂x
+ ∂

∂y

)
(w + z1 + z2 + z3)2 = GN M f

z2
t − νz2

xx − νz2
yy + GM N

(
∂

∂x
+ ∂

∂y

)
(w + z1 + z2 + z3)2 = GM N f

z3
t − νz3

xx − νz3
yy + GM M

(
∂

∂x
+ ∂

∂y

)
(w + z1 + z2 + z3)2 = GM M f.

(37)
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Analogously to the 1 dimensional case, besides computing the derivatives we have to
project the quantitiesw, z1, z2, andz3 on the remaining coarse grids at the end of each
iteration.

The cost of computing a second derivative is 8N3. Since we have 8 of them, we spend
64N3 operations.

To compute the nonlinear terms we have first to decompose the quantity(w + z1 + z2 +
z3)2 in its 4 components. This decomposition takes four matrix-vector multiplications and
therefore costs 32N3 operations. After this, we still have to compute eight derivatives,
adding 64N3 more operations. So, the cost for the treatment of the nonlinear terms is 96N3

operations per iteration.
The projection of each of the four quantities on the remaining three coarse grids takes

24N3 operations and so we will need 96N3 to project all of them.
The total cost per iteration to solve the system of equations (37) is also 256N3 operation,

which is the same cost as the SCM.

5. NUMERICAL RESULTS

In this section we compare the numerical solutions obtained by applying the NLG and
the SCM to the Burgers equations (29), (36) and the Reaction-Diffusion equation (34). Nu-
merical tests prove that the solutions produced by the two methods show the same behavior
when considering temporal and spatial accuracy. In this article we do not address the com-
parison of actual CPU time because a more involved study including code optimization and
computer architecture characteristics is necessary to offer reliable and useful conclusions
about pros and cons of each method (see [5]). Instead, we want to give motivation to such
study by showing that the NLG splitting of modes generates virtually the same numerical
solution as the SCM involving an equal or lesser number of operations per iteration. This
also suggests that a different choice of time integrator for the low modes and the high modes
equations will increase significantly the efficiency of the NLG.

We start by showing that one does not lose spatial precision when differentiating after
the splitting of the modes. Table 1 shows theL2 error in evaluating the first and second
derivatives of the modes cos(K x) by using the SCM and NLG approaches. We considered

TABLE 1

L2 Error of Computed Derivatives Using SCM and NLG

K SCM 1st D NLG 1st D SCM 2nd D NLG 2nd D

1 0.1264E-13 0.1678E-13 0.5729E-12 0.3352E-12
2 0.1369E-13 0.1716E-13 0.6046E-12 0.3425E-12
3 0.1708E-13 0.1667E-13 0.6111E-12 0.4267E-12
4 0.1601E-13 0.2075E-13 0.6359E-12 0.4049E-12

14 0.4815E-13 0.4987E-13 0.5724E-12 0.4846E-12
15 0.4874E-13 0.4729E-13 0.5315E-12 0.4756E-12
16 0.6153E-13 0.6082E-13 0.9003E-12 0.9166E-12
17 0.6392E-13 0.6335E-13 0.7647E-12 0.8203E-12
30 0.1265E-12 0.1200E-12 0.3062E-11 0.3114E-11
31 0.1649E-12 0.1603E-12 0.2834E-11 0.2839E-11
32 0.1569E-12 0.1545E-12 0.3393E-11 0.3400E-11
33 0.2950E-12 0.2917E-12 0.7266E-12 0.6221E-12
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a grid with 66 points, corresponding toN = 16 andM = 33, meaning that values ofK ≥ 17
represent the high modes for this grid. Notice that NLG and SCM show the same spatial
resolution.

It is well known that roundoff error in evaluating derivatives increases with the number
of collocation points and the order of the derivative (see [5, 6]). This is the reason why
NLG performs slightly better on the low modes (which are the high energy ones) for the
second derivative results. The computations for these modes are done using a matrix based
on half of the number of points of the corresponding matrix for the SCM. This difference
will become more explicit in the case of a Chebyshev collocation method where roundoff
error increases much more drastically with the number of points than in the Fourier case.

In the following numerical experiments we present a general view of the accuracy be-
havior of NLG splitting with respect to the SCM by solving the equations of Section 4
and comparing the numerical solutions obtained by both methods. We use a fourth order
Runge–Kutta method for all time integrations with the time step1t given by

1t = CFL

νM2
,

where CFL is the stability constant. We will always use the same time step for both NLG
and SCM. In most of the examples below an exact solutionu(x, t) is chosen in advance and
the right-hand sidef is determined accordingly. TheL2 error is then measured between
the exact solution and the numerical solution with initial conditionu(x, 0).

Let’s consider the Burgers equation (29) with an exact solution of the form

u(x, t) = e− t
100 cosx. (38)

Figure 3 shows theL2 errors of NLG and SCM plotted against the number of points in
the fine grid for a final timet = 100. Here we tookν = 0.001 andCFL= 0.01. The results
for NLG are plotted with crosses (+) and SCM with circles (◦).

FIG. 3. L2 errors for the Burgers equation withν = 0.001.∗, SCM;◦, NLG.



                 

576 COSTA AND DETTORI

TABLE 2

L2 Error for the Burgers Equation

Pts SCM NLG Order

18 4.601342004318910E-011 4.601225192272278E-011
26 9.860888789122200E-013 9.859275305004013E-013 5.22
30 2.711686788383684E-013 2.712609741508736E-013 4.51
34 8.975752599721587E-014 8.955637530818245E-014 4.41
42 1.756242681346713E-014 1.755386246065911E-014 3.86

As we can see from Fig. 3, there is no difference in the numerical results of NLG and
SCM and Table 2 shows that the order of decay of the error is the one of the Runge–Kutta
method employed for the temporal integration. The decreasing in the order is due to a
contamination of the results by roundoff errors (see Table 1).

This first experiment, however, involved only low modes for all the grids tested. A more
significant example is Eq. (29) with the exact solution

u(x, t) = e− t
1000(cosx + δ coskx),

wherek will be set up to represent a high mode andδ its amplitude. For this second
experiment, we consider a grid with 34 points, yieldingM = 17 andN = 8, and values of
k ≥ 9 represent high modes for this grid. The viscosity and CFL values are taken as before
with k = 17 andδ = 0.01. This amplitude mimics a natural distribution of energy in realistic
problems, where high modes carry less energy than low modes. Figure 4 shows theL2 error
as time evolves for both methods fromt = 0 to t = 1000. Notice that the magnitude of the
error is bigger in this case since the nonlinearity in (29) gives rise to the mode cos(34x)

which cannot be well represented by the grid. Once again it is not possible to distinguish
one result from the other throughout the whole process of temporal integration. It was to
stress this fact that in Fig. 4 we plotted the error against the number of iterations.

FIG. 4. L2 error for Burgers withν = 0.001 and 34 points. The lines representing SCM and NLG are coincident.
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FIG. 5. Solution for the homogeneous Burgers att = 100. Lines for SCM and NLG are coincident.

For a more realistic test, where one does not control which modes are, or are not, present
in the numerical simulation, we consider Eq. (29) in its homogeneous form, i.e., withf = 0,
and compare how both methods recover the classical sinusoidal shape of its solution from
the Gaussian-like initial condition

u0 = e−100(x−π)2

whenν = 0.001 att = 100. In this case a grid with 66 points was used in order to have
sufficient spatial resolution to capture the steep gradients from the solution. The value for
CFL= 0.01 still yielded stability. Once more the same numerical solutions were obtained
and both are shown in Fig. 5.

The experiment for the Reaction-Diffusion equations (34) and (35) consists in considering
an oscillatory exact solution of the form

u(x, t) = cos(t) cos(x),

with the corresponding forcing term determined by it. The numerical solutions were
computed up tot = 1 using the parameters valuesCFL= 0.01 andν = 0.001. Figure 6
and Table 3 show that we achieved the same quality of results as for the Burgers equation,
i.e., the NLG splitting generates the same numerical solution as the SCM.

TABLE 3

L2 Error for the Reaction-Diffusion Equation

Pts SCM NLG Order

18 2.685663324028776E-006 2.685663324295888E-006
30 4.009815791896255E-008 4.009815786416866E-008 4.1153
42 2.702694205085399E-009 2.702694304005631E-009 4.0079
90 5.936846844181185E-012 5.936861229501006E-012 4.0156

126 4.075862407295771E-013 4.076214398280533E-013 4.2876
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FIG. 6. L2 errors for the Reaction-Diffusion equation.∗, SCM;◦, NLG.

For the case of 2 dimensions in space we consider Eq. (36) with an exact solution of the
form

u(x, t) = e−t e−40((x−π)2+(y−π)2).

As before, this function provides a natural energy distribution throughout its spectrum with
low modes carrying most of the energy, but still keeping the importance of the high modes
for the accuracy of the numerical solution. We integrated (36) and (37) up tot = 1 with

FIG. 7. L2 errors for Burgers 2D withν = 0.001 att = 1. ∗, SCM;◦, NLG.
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TABLE 4

L2 Error for the 2D Burgers Equation

Pts SCM NLG Order

22 8.635929773499972E-004 8.635929773499946E-004
42 4.173275481643102E-004 4.173275481643098E-004 0.5623
74 2.889167206302692E-005 2.889167206302680E-005 2.3573
78 1.950972747131406E-005 1.950972747131406E-005 3.7292
82 1.272719803347214E-005 1.272719803347162E-005 4.2708
90 5.299905987531454E-006 5.299905987532374E-006 4.7054

102 1.288118941678376E-006 1.288118941678128E-006 5.6506
122 3.403030329596673E-008 3.403030329609838E-008 10.1472

ν = 0.01 andCFL= 0.01. Figure 7 shows the norm of theL2 error plotted against the
number of points. Note that convergence is poor at the lower number of points when the
grid is not fine enough to solve the steep gradients generated by the Gaussian solution and
forcing terms. The refinement of the grid improves its ability to capture those gradients
and leads to the fourth order convergence of the Runge–Kutta for the intermediate values
of number of points, as we can see in Table 4. The further refinement of the grid yields a
super-convergence order when1t becomes small enough so that the spatial errors start to
dominate. Nonetheless, the NLG splitting solution was the same as the SCM under all the
different situations above described.

6. CONCLUSIONS

In this article a Nonlinear Galerkin type splitting in the case of a Fourier pseudospectral
discretization in spatial dimension 2 was introduced and some of its numerical features
as spatial precision and computational costs were analyzed by means of the Burgers and
Reaction-Diffusion equations in 1 and 2 spatial dimensions.

From the numerical experiments here presented we conclude that the NLG splitting in
high and low modes is a very attractive technique in solving partial differential equations via
a pseudospectral discretization. It maintains the spatial precision and the computational cost
of the standard method while opening the way to the application of more refined treatments
that distinguishes between high and low energy quantities.

It clearly deserves further study with respect to its application to more realistic problems
and the use of different basis of functions as the Chebyshev and Legendre ones. In subsequent
works we will explore the NLG feature of distinguishing between low and high modes and
also its potential for easy parallelization and reduction of the roundoff error.
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