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In this article we study computational issues related to a nonlinear Galerkin type
splitting (NLG) of partial differential equations in the case of a Fourier collocation
discretization. We present an extension of the method to two-dimensional problems
and show that the sole separation of modes in NLG can bring precision and compu-
tational costs advantages to the standard collocation scheme. Numerical experiments
with the Burgers and a reaction-diffusion equation for 1 and 2 dimensions are also
shown. (© 1998 Academic Press

1. INTRODUCTION

In this article we introduce a pseudospectral Fourier collocation splitting for two
mensional partial differential equations aimed at reducing the cost of computing sp:
derivatives. The splitting was originally motivated by the Nonlinear Galerkin Method a
we will therefore refer to it as NLG.

We extend the results of a previous article [3] on the one dimensional case to two s
dimensions and point out the relevant numerical aspects of both cases in a comparisor
the standard collocation method (SCM). The extension to two dimensional problems o
Chebyshev collocation case as in [4] is the subject of a forthcoming work.

The basic idea in the Nonlinear Galerkin method (and in the theory of inertial manifol
is the decomposition of the unknowninto its large scale and small scale components,
andz:

u=y+z
In the case of a Fourier expansion it is clear thabrresponds to the low modes antb
the high modes (see [3]).
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FOURIER COLLOCATION SPLITTINGS 563

When a collocation method is used (as opposed to a Galerkin spectral method) we
to find a decomposition of the kind above in the physical space. In one space dimer
such a decomposition is accomplished via the splitting of the fine grid into two coz
grids based on half of the points. In the case of two space dimensions, the fine grid is
into four coarse grids each one having one fourth of the points of the fine grid. The t
modes component is decomposed into three compoméris, andz®. Each component
can be represented by any one of the coarse grids, allowing most of the computations
performed using only one fourth of the number of points of the original fine grid. This w
result in a significant reduction of the number of operations necessary to calculate sf
derivatives. The treatment of nonlinear terms, however, requires a re-projection of all m¢
on the fine grid at the end of each iteration. In certain cases like, for example, the Bur
equation, this extra projection may compensate the advantage in computational cos
NLG when treating derivatives and one may end up with the same number of operat
per iteration for NLG and SCM. However, as shown in Section 4, this is not the case w
NLG is applied to equations with a more complicated structure and a higher numbe
derivatives.

Numerical results show how the NLG splitting produces an approximate solution wk
is as accurate as the one obtained with a SCM based on the fine grid. Other nume
and theoretical studies have been done to compare various versions of NLG method:
more recently, the Postprocessed Galerkin method to a standard Galerkin or colloc
approximation and different conclusions have been reached regarding the accurac
efficiency of the methods, see, for example, [7—14] and references therein. It shoul
pointed out that in all of those cases the comparison was with a Galerkin or colloca
scheme based on the low modes or coarse grid only.

Several numerical results in the one dimensional case suggest the choice of a
splitting of the equation into high and low modes that keeps all the linear and nonlir
terms, without disregarding any. Also in light of this fact we believe that the right comparis
is with a SCM based on the fine grid.

The main focus of this article is not the complete study of the computational efficiel
of the NLG. Further aspects of this issue are addressed in a forthcoming article (see
where we show how the efficiency of the NLG approach can be significantly impro
by considering different time integration schemes for the low modes and the high mc
equations. By introducing a modified Runge—Kutta scheme for the high modes equa
one can choose a larger time step reducing the overall computational cost of the algor

The article is organized as follows. In Section 2 we define the grids and the rel:
spaces of functions and associated projections that will be used throughout the articl
Section 3 we present the decomposition into high and low modes and the constructic
the interpolating polynomials. In Section 4 we apply the NLG to various equations in
and two space dimensions and discuss the computational cost of the method. Num
results comparing NLG and the SCM are shown in Section 5.

2. PRELIMINARIES

Throughout this article we will use the following spaces of trigonometrical polynomia
Let M =2N + 1; we define

Un = (¥ 1kl <N},  Vy ={sinjx,coskx;1<j<M-10<k< M},
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of dimensions & + 1 and M =2(2N + 1), respectively. We also define the spat¥d,
the orthogonal complement tfy in Vy,.
A generic functionf (x) can be projected o¥fy by interpolation on the following set of
points,
M — ug|

j—m7 ijSZM_l’

and to project otJy we can use either one of the set of points

27 .

N

N_— , 0<j=<2N,
TN+ ==

N @j+Drm )

R TN ==

For details on the construction and approximating properties of the projection opere
corresponding to these grids we refer the reader to [3].

The 2-dimensional trigonometrical spaces that follow are formed by cross product
Vm, Un, andU,'\\,":

UNNZUNXUN, UN|\/|=UNXU,'\Y|, UMNZU,QAXUN, UMMZU,\'\IAXU,'\\IA

@)

and
VMM = VM X VM.

Note thatVpym =Unn @ Unm @ Unn @ U
A generic functionf (x, y) in Vmm can be decomposed in 4 componehts w + 7% +
72 + 7%, each one belonging to a different space above, i.e.,

w € Uyn, zleUNM, ZZEUMN, ZSEUMm.

We can represent these spaces by means of rectangular areas in the space
2-dimensional wave numbér= (k;, ko) as it is shown in Fig. 1. Note that all four space:
in (1) occupy one fourth of the area occupied\yy in Fig. 1. This is an indication that
we just need one fourth the number of points to represent each space in (1).

We definek as alow mode if|kq|, k2| < N, ahighmode if|k;|, [ko| > N, and amixed
mode otherwise.

To project a functionf (x, y) onto the 2-dimensional spaces above we need to define
following 2-dimensional grids, which are cross products of the grids previously definec

aly = (N8, o =Ma)), = E"a)),  di =0, @

and to project onto the spadk v = Vm x Vi we use the fine grid

pi'YIj = (XiM’ XJM)

Figure 2 shows the spatial disposition of the several grids or they plane.
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M
Umm Unm Unm Umm
N
Umn Unn Unn Umn
K2 0
Umn Unn Unn Umn
-N
Umm Unm Unm Umm
-M -N 0 N M

K1

FIG.1. The SpaCeUNN,UNm,UMN,andUMM.

Note that
(i ={au{plu{ciu{d};
indeed, we have
pgl,zj = ai',\lj’ pg{l+l,2j+l = bi'?lj’ pg{l+l,2j = Ci’?‘j’ pgill,zj-&-l = di',\lj'

In order to construct projection operators that interpolate a fundtion y) at each of
the grids mentioned above, let us consider the Dirichlet kernels

H2N+(x, y) = % XN: gy 3)
k=—N
¢ b ¢ b ¢ ®
a d a d a ¢
c b ¢ b ¢ b
a d a d 2 d
c b ¢ b ¢ b
a d a d a d

FIG. 2. The 2D grids for NLG.
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and
(|
o0y = oy D e @
Wherec,'("' = 1+ §j,m. Itis well known that
H2N+1(%—iN’§jN) — H2N+l(’7iNv nJN) — 8i,j (5)
and
HAM (M, x") = 81 5. (6)

DEFINITION 2.1. Let f(x, y) be a function defined in [@7]?. We define the trigono-
metric polynomialQ}, f as

Q?\jf(X» y) = Z f H2N+l X %-l )H2N+l(y é: )

j1=0
2N
Z EJ ’ H2N+1(X EJ )H2N+1(y &N ).
Equation (5) shows tha®?, f interpolates the functiorf (x, y) at the collocation grid
{ai"“]- ), ie.,
Q4 f (--)_f(a1 ) 0<i,j <2N.

In a similar way we define the trigonometric polynomi&)ﬁI f, Q% f, and QY f that
interpolatef (x, y) at the grids{bi’f‘j}, {c 3, and{d -1, respectively,

QRfxy) = Z F (s M) HENHE (x, ) H2N 2 (y, ), 7
j,1=0
2N

Q(,:\I f(x’ y) — Z f (st’ n|N) H2N+1(X, sJN) H2N+1(y, nlN)’ (8)
j.1=0

Q?\] f(X, Y) Z f 77] s H2N+1(X 77] )H2N+1(y é ) (9)

j,1=0

Finally, we define the trigonometric polynomi@F) f interpolating at the fine gri(alpi'f"j }:

DEFINITION 2.2. Let f(x, y) be a function defined in [@7]2. We define the trigono-
metric polynomialQ}, f as

2M -1
QN f(x,y) = Z f(ij, M YHM (x, XJM)HM(y, xM).
i1=0

It is easy to show that the ponnomi@l,‘\’,I f interpolatesf (x, y) at the grid{xM}:

Quf(xM. x) = f(x".x\"), o0=<ij<2M -1
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We can give alternate representations of the polynomials above by using (3) and (4

N

QY f (X, y) = Z fAIL\i,kzei (kx+ey) (10)
kl,k2=7N
where
1 N .
~a st
fkl,kz = W Z f(EJN, %-IN)e I(kléJ +k2§| )’ (11)
j.1=0
and
M .
QN f(x,y) = Z fo | 8oy, (12)
ks ko=—M
where
1 2M—1 D
flfl o = T Z f(XjM’ )(Il\/l)e—l(kv(j +kox )’ (13)
’ aMzc ), 426

andc,'(\f_kz = Ck'\f Ck'\;I = (14 Sy, M)A+ Sy m)-
The alternative representations for the other polynon@&js Q$;, andQ¢, are analogous
to the one in (10) and (11).

3. HIGH AND LOW MODES DECOMPOSITION

In this section we construct the collocation operatiNg, Gnm, Gun, andGyy that
project f (x, y) onto the space¥yn, Unm, Umn, andUpyy, respectively. We will then
prove that each of these quantities can be expressed in terms of its values at only one
coarse grids in Fig. 2.

THEOREM3.1. Let M=2N +land Qf;, Q%, QY. Q% QY be defined as ifL0) and
(12). We set

3+ QY+ Q% + Q%

INN = 2 (14)
Q% + Qf — QY — Q%

Gnu = y , (15)
a 1 Q¢ — b _ ~Ad

Gun = N Qu ) Q QN, (16)

Gum = QY — Inn — Gnm — Gun. a7

Then any function & Vy can be written uniquely as

f=JIwf+Gumf +Gunf +Gumf,

where J,]Nf € UNN,GNmf € UNMvGMNf € UMN,and GMMf e Uum.
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Proof. We start by showing that the low modgk; |, |ko| < N) of f andJyy f are the
same. We will use formula (13) and recall that for these valués, ¢t we haveck'\i',k2 =1,

2M—
fk1 ky = Z _I(klx +Hex') (18)
J1=0
2N ) 2N .
(zf 3 e S e
i.l=0 j.1=0 j.1=0

2N
+ > (Y )eik'dfl) . (19)

j.I=0

Therefore, using (11) and the corresponding formulas for dridsandd,

M 1, -a ~b ~C ~d
fkl,kz = Z(fkl,kz + kakz + fqukz + fkl,kz)'

It remains to show that the componentsfoin Uyy andUyy areGym f andGyn f,
respectively. As we can see from Fig. 2, the componenftsiafUy v are of the form

fooniit: Kki=-N,...,N, ke=0,....N
and

fkl,sz(ZNJrl)’ klz_N,..., N, k2=0,...,N.

We will consider the first case and WrifAeleZN 41k, @S

2N

2N

2 1 N\ o—i (kigN+F@2N+1—kp)eN N\ =i (ki N+ (2N+1—kp)EN

fk1,2N+1—k2=4M2<Z f(a,J)e |(1§J+( + 2)&)4_2 f(di,j)e |(1’I|+( +1-k)gN)
j.1=0 j.1=0

2N 2N
n Z f (bil?lj) g i (kan +@N+1-korn) | Z f(cil?lj)ei(kléjNJr(ZNJrlkz)mN))'

j.1=0 j.1=0

Using the identities

e @NFDEN _ g eH @+ _ g (20)
we have
1 2N Ny N NN
- i (k&N —k i (kan =k
Fp Ntk = 4M2 ( Z f(al))e o) Z f(df)e lanf' ks
2o j.1=0

2N ON
_ Z f (biNj)e—i(km;\‘—ksz) _ Z f(CiNj)e_i(kléjN_kﬂhN))

j.I=0 j.I=0

1, -a ~b ~C
4(fk1 -kt fkl —ko T fkl,—kz - fk1,—k2)‘
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The proof forfkaHZNH) is analogous to this one and so is the proof for the compone
of fin Uun-

Our goal is to show that we can express all the componenfsinfthe above decom-
position by using only the values df at the collocation gridaif‘j. The next lemma will
give an explicit formula for the Fourier coefficients fah terms of its collocation values
f (ay',“j ). We will illustrate the details of the proof only in the cake Uy N, where all modes
involved are a combination of a high mode in the first variable and a low mode in the sec
variable (see Fig. 2). The same result can be shown for the other components usinga s
argument.

LEMMA 3.1. Consider a function €x, y) in Uy of the form

N+1 N

|(N+k ko)-z |(N+k ,—k2)-z
fix,y) = E § N+k1 KLE fN+k1 €T
lkz

d—(N+ade)z | P & CNH. k7).

~P
+ DNk ke —(N+ky),—

where fAfl’kz is given in(13) andz= (X, y). Defining the new Fourier coefficients,

—h,

o -
Fioke = |<1 ON+1) ko> Fig.—ke = Tl Ki—(2N+1),—ks (21)

p
2N+17k1,k2’ Fo -k, = f2N+17k1,7k2’ (22)

_.,,>

F*kl,kz =

we can rewrite {x, y) in a simpler form,

N

_ i (ki—(2N+1).kp) -z i (2N+1)—ky, —kp)-z
fX,y)=)> Fek€ + Foi—k,€
’ 1, K2 —K1,—7RK2
k=0
+ Fkl,—kzei(kl_(2N+1)’_k2)‘z 4 F—kl,kzei(ZNJrl_kl’kZ)'Zv (23)

where the coefficientscFare given by the formula

2 —|ka

1
o= e 2 alt) =g 24)

wherep =1+ 8y, 0 andk = (kq, ko).

Proof. First, we expres$ (aJNJ) in terms of the coefficientBy above. So, inserting]N,I
into (23) and using the identities in (20) we have

N
al) = > AL, (25)
k=—N
with N = (N, N). -
Now we multiply this equation bg '3, whereq = (g1, 0), |1, [d2] < N and sum
over the gnd{a |} to obtain

N 2N
Z f(aj’\’ll)e—iq.aﬁ — Z 1381 Fk Z ei (k_q).aj!‘fl-

j,I=0 k=—N j,I=0



570 COSTA AND DETTORI

But, since

2N

S dkaa - M k=q

e 0, otherwise

we find

2N ) N
Z f(a))e™ "% = g2 FqM2.
i.1=0

The next lemma shows how the Lagrange interpolation opefatgy corresponds to
formula Q%, defined before.

LEMMA 3.2, Let f(X,y) € Uun be as in(23); then we can represent f by

2N
foay)y =" fah)hNx y). (26)
j.1=0
where
hlj\{llN (X, y) — (ZHZM (X, %-]N) _ H2N+1(X, E]N)) H2N+1(y’ ElN)- (27)

Proof. Asinthe previouslemma, we will use the expression with the Fourier coefficiel
of f,

N
f(X, y) — Z Fkl’kzé(k17(2N+1)’k2).Z + F_kl,_kzel((2N+l)7k1,7k2)'2
k=0

+ Fkl,—kzei (k1—(2N+1),—kp)-z + F_kl,kzei(zNﬁ’l*kl,kz)-Z (28)

with the F¢’s defined as in (21) and (22). Substituting into (28) the values for the Four
coefficients in

N 2N
f(x,y) = % Z (ei(k1(2N+1),k2)~z Z f(a]!\’ll)eik.aj’\fl

k=0 j.1=0

2N
. H N
+ e|(2N+17k1,7k2)»z f (aN )e—lk-aj_I
Z i

j,1=0
2N
+ ei (k1—(2N+1),—kp)-z Z f (aj'\l|)ei(k1’7k2)'all\-"
j,1=0
2N
+ ei (2N+1—k1),k2)-Z Z f (ajl\ll)ei(kl,kg)a}\_")’
j,1=0

and using (20) we obtain

2N N N
1 _ .
f(x,y) = f (a}\fl) <Z g (ki—(N+1) ko)-(z-a}}) + Z o @N+1-ki.—ko)-(z-a})
=0

2
M jil k=0 k=0

N N
+ Z g (ki—(@N+1).~ko)-(z-a})) + Z e (2N+1k1),k2).(zaj'j)> )
k=0 k=0
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Now, we separate the sumskpandk, and rearrange the summationkinas

1 2N |(N+k1)(x

- |kz( A
fooy) =3 Z > o Ze y-§")

=0 N+1§\N+k1|§M ko=—N

Itis easily seen from the definitions of the Dirichlet kernd&" (x, y) andH2N+1(x, y),
(3) and (4), that

1 o (N+k) (x—]) , ,
= Z = 2HM (x, &) — HAN(x, &]Y).
N+1<|N-+ky | <M ke

This concludes the proof of the lemma.

Remark 3.1. Givenafunctionf € Uyy, its derivative with respect tocan be computed
by using the interpolation formula (23),

0
afxf(XsY) Zf J| J|(X y)

j,1=0

where
(X y) = [ 2H2M (X EJ ) _ H2N+1(XanN)} HZNH(y, SIN)~

4. COMPUTATIONAL COSTS COMPARISON

In this section we compare the effectiveness of the NLG splitting with respect to
SCM in the case of spatial dimensions 1 and 2 when considering explicit integratio
time. We use the same time step for both methods, therefore it is only necessary to con
their respective computational cost per iteration. As it was said before the use of dis
time steps for the high and low modes is the subject of a forthcoming paper (see [2]).
derivatives below are carried out by matrix-vector multiplications.

In the case of one space dimension we will consider the Burgers equation, a reac
diffusion equation, and the Kuramoto—Shivashinsky equation. The details of the cons
tion and approximating properties of the projection operafagrsand Gy can be found
in [3].

Consider the Burgers equation

1
Ut — VUyy + E(u2)X =f  xe(02n),t>0, 29)

u(0,t) = u2m,1t), t>0.

The standard collocation scheme is based on the fine grid which coniipeits. At
each iteration we have to perform two derivatives, i.e., two matrix-vector multiplicatio
Therefore the number of operations per iteration necessary to evaluate the derivati
2(2M)2 =8M?. SinceM = 2N + 1, the total cost per iteration for the SCM i$18 ~
8(2N)2 = 32N? operations per time step.



572 COSTA AND DETTORI

In the case of NLG, we solve the system

19
yt—vyxx+§—JN(y+z)2= In T,

15 (30)
Zt — VZxx + 58 GM(y+Z)2 f

The projectionsly andGy are carried out on the griqN with only 2N points, there-
fore each derivative take@N)? operations and the cost of computiyg, and z,y is
2(2N)?=8N2. The nonlinear part of each equation is evaluated in the following way. Fir
we decomposey + 2)? in high and low modes by doing

1 o
I +2?(E)) = 5Qu + QY +2°(&]")

I\Jll—‘

[((y+2%(&)") + Quy + 2%(&])].

For this step, we only need to compu@g(y + 2)2(&]V). This quantity is also used in
the computation of the high modes

Guy+22(&") = (lm — Iy + 2°(&")
1 o
=+ 2%(E) - 5[y +2°(&") + Quy + 2%(§])]
1 o
= E[(Y—FZ)Z(EJN) - QN(y_'_Z)Z(SjN)]’

The derivatives of the nonlinear terms are carried out by 2 matrix-vector multiplicatic
and using the identities

9 9

&JN(V—FZ)Z@J‘N) = 5QN(JN(Y+Z)2(§I‘N)), (31)
2N

—GM(y+Z) V) =D _Guy+22(E) ) hi (&). (32)

j=0

This takes 22N)? = 8N? more operations, bringing the treatment of the nonlinear terr
to 12N? operations per iteration.

At the end of each iteration we have to projgcndz on the other coarse grb@g\‘, via
the operatoQy, yielding another 812 operations. The total cost per iteration for the NLG
is 28N 2 operations. Using the same time step for both methods we $éeperations per
iteration, i.e., 12% of the operations when using NLG.

Remark 4.1. Starting with the values of andz at the fine grid, the NLG requires fewer
operations than SCM to evaluate the linear and nonlinear derivatives at one of the cc
grids. The projection of thg andz on the other coarse grid at the end of each iteratic
involves an additional 1192 operations. However, this cost is fixed and does not depend
the equation. This indicates that the overall gain due to the NLG splitting will increase w
the number of derivatives in the specific equation.
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For example, in the case of the Kuramoto—Shivashinsky equation

4 82
ut+u8 4u+82u~|—uux_f x € (0,2m),t > 0O, (33)
u(0,t) = u2n,t), t >0,

the NLG splitting in high and low modes costs less, since we have one more derive
than in (29). The total number of operations per iteration for the Kuramoto—Shivashin
equation is 4012 for NLG against the 482 for SCM.

Let us consider the Reaction-Diffusion equation

Ut — vUyy + U —u = f, X € (0,27),t > 0,
{t XX (0, 2) (3

u,t) = u@2n,t), t >0,
and the corresponding NLG splitting,

9
Vi —vyx + — IN(Y +2° = (y+2) = I,
aX (35)

0
2= vZoct o Gu((y + 22— (y+2)=Gnuf.

Since the nonlinear part does not involve any derivatives, in the SCM we can just eval
the terms at the grid points. On the other hand, for the NLG we still need to separate
nonlinear termin high and low modes and re-project, making this approach computatior
more expensive.

The test problem in spatial dimension two is the following scalar Burgers-like equat

Ut — VUxx — Uy + (UWx + W)y = f, (X, y) €(0,21)%t>0  (36)

with periodic boundary conditions.

This equation is a simple extension of the Burgers equation to 2 dimensions and it
chosen due to its simplicity and because it contains the important features of our ana
which are the linear and nonlinear terms. Again, we will compare a NLG scheme with
2D SCM based on the fine grid. Each directional derivative invo({2&4)2 x 2M = 8M3
operations. Since we have 4 derivatives, we have a total cost\df 8perations per itera-
tion, or 32M® &~ 32(2N)3 = 256N 3 operations per iteration.

Forthe NLG scheme, we split Eq. (36) in four equations, each one containing respect
the low modew (not calledy anymore due to thg direction), the mixed modes, z2, and
the pure high mode®. This splitting results from applying the operatdigy, Gnwm, Gun,
andGy v to (36) leading to the following system of equations:

a

wt_wax_‘)wyy‘l‘JN<&+8—y>(w+Zl+ZZ+23)2=JNf

]
Z’[l_vzix_vz)l/y"i_GNM(&+a_>(w+zl+zz+23)2=GNMf

5 ] (37)
ZTZ_VZ)Z(X—VZiy‘f‘GMN(a—X+a—y>(w+zl+zz+23)2:GMNf
3 3 3 9 9 1, 52, 32
z — vz, — vz, + Gum &+a—y (w+z+22+2)°=Gum f.
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Analogously to the 1 dimensional case, besides computing the derivatives we hay
project the quantitiesv, z*, 72, andz® on the remaining coarse grids at the end of eac
iteration.

The cost of computing a second derivative 1$°8 Since we have 8 of them, we spenc
64N? operations.

To compute the nonlinear terms we have first to decompose the quantitye® + z° +
7%)? in its 4 components. This decomposition takes four matrix-vector multiplications
therefore costs 322 operations. After this, we still have to compute eight derivative:
adding 64N2 more operations. So, the cost for the treatment of the nonlinear termisis 9¢
operations per iteration.

The projection of each of the four quantities on the remaining three coarse grids t:
24N3 operations and so we will need B8 to project all of them.

The total cost per iteration to solve the system of equations (37) is al$¢*2&geration,
which is the same cost as the SCM.

5. NUMERICAL RESULTS

In this section we compare the numerical solutions obtained by applying the NLG
the SCM to the Burgers equations (29), (36) and the Reaction-Diffusion equation (34).
merical tests prove that the solutions produced by the two methods show the same bet
when considering temporal and spatial accuracy. In this article we do not address the «
parison of actual CPU time because a more involved study including code optimization
computer architecture characteristics is necessary to offer reliable and useful conclu
about pros and cons of each method (see [5]). Instead, we want to give motivation to
study by showing that the NLG splitting of modes generates virtually the same numeil
solution as the SCM involving an equal or lesser number of operations per iteration. -
also suggests that a different choice of time integrator for the low modes and the highm
equations will increase significantly the efficiency of the NLG.

We start by showing that one does not lose spatial precision when differentiating ¢
the splitting of the modes. Table 1 shows th&error in evaluating the first and second
derivatives of the modes cg@sx) by using the SCM and NLG approaches. We considere

TABLE 1
L2 Error of Computed Derivatives Using SCM and NLG

K SCM 1stD NLG 1st D SCM 2nd D NLG 2nd D
1 0.1264E-13 0.1678E-13 0.5729E-12 0.3352E-12
2 0.1369E-13 0.1716E-13 0.6046E-12 0.3425E-1-
3 0.1708E-13 0.1667E-13 0.6111E-12 0.4267E-12
4 0.1601E-13 0.2075E-13 0.6359E-12 0.4049E-12
14 0.4815E-13 0.4987E-13 0.5724E-12 0.4846E-1:
15 0.4874E-13 0.4729E-13 0.5315E-12 0.4756E-1:
16 0.6153E-13 0.6082E-13 0.9003E-12 0.9166E-1-
17 0.6392E-13 0.6335E-13 0.7647E-12 0.8203E-1«
30 0.1265E-12 0.1200E-12 0.3062E-11 0.3114E-1:
31 0.1649E-12 0.1603E-12 0.2834E-11 0.2839E-1:
32 0.1569E-12 0.1545E-12 0.3393E-11 0.3400E-1:

33 0.2950E-12 0.2917E-12 0.7266E-12 0.6221E-1-
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a grid with 66 points, corresponding kb= 16 andM = 33, meaning that values &f > 17
represent the high modes for this grid. Notice that NLG and SCM show the same sp
resolution.

It is well known that roundoff error in evaluating derivatives increases with the numi
of collocation points and the order of the derivative (see [5, 6]). This is the reason v
NLG performs slightly better on the low modes (which are the high energy ones) for
second derivative results. The computations for these modes are done using a matrix
on half of the number of points of the corresponding matrix for the SCM. This differer
will become more explicit in the case of a Chebyshev collocation method where roun
error increases much more drastically with the number of points than in the Fourier ca

In the following numerical experiments we present a general view of the accuracy
havior of NLG splitting with respect to the SCM by solving the equations of Sectior
and comparing the numerical solutions obtained by both methods. We use a fourth ¢
Runge—Kutta method for all time integrations with the time st¢miven by

_CFL
T M2’

where CFL is the stability constant. We will always use the same time step for both N
and SCM. In most of the examples below an exact solutiont) is chosen in advance and
the right-hand sidef is determined accordingly. The? error is then measured betweer
the exact solution and the numerical solution with initial conditigr, 0).

Let’s consider the Burgers equation (29) with an exact solution of the form

At

ux,t) = €10 COSX. (38)

Figure 3 shows th& 2 errors of NLG and SCM plotted against the number of points |
the fine grid for a final time& = 100. Here we took = 0.001 andCFL=0.01. The results
for NLG are plotted with crosses+) and SCM with circlesd).

Burgers at t = 100 and visc = 0.001

Mumber of points

FIG. 3. L?errors for the Burgers equation with=0.001.x, SCM; o, NLG.
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TABLE 2
L? Error for the Burgers Equation

Pts SCM NLG Order
18 4.601342004318910E-011 4.601225192272278E-011

26 9.860888789122200E-013 9.859275305004013E-013 5.2
30 2.711686788383684E-013 2.712609741508736E-013 4.5
34 8.975752599721587E-014 8.955637530818245E-014 4.4
42 1.756242681346713E-014 1.755386246065911E-014 3.8

As we can see from Fig. 3, there is no difference in the numerical results of NLG :
SCM and Table 2 shows that the order of decay of the error is the one of the Runge—k
method employed for the temporal integration. The decreasing in the order is due
contamination of the results by roundoff errors (see Table 1).

This first experiment, however, involved only low modes for all the grids tested. A mc
significant example is Eq. (29) with the exact solution

ux,t) = e*ﬁoo(cosx + § coskx),

wherek will be set up to represent a high mode ahdts amplitude. For this second
experiment, we consider a grid with 34 points, yieldiMg= 17 andN = 8, and values of
k > 9 represent high modes for this grid. The viscosity and CFL values are taken as be
with k=17 ands = 0.01. This amplitude mimics a natural distribution of energy in realist
problems, where high modes carry less energy than low modes. Figure 4 shavisther
as time evolves for both methods frdre- 0 tot = 1000. Notice that the magnitude of the
error is bigger in this case since the nonlinearity in (29) gives rise to the mod@4zos
which cannot be well represented by the grid. Once again it is not possible to disting
one result from the other throughout the whole process of temporal integration. It wa
stress this fact that in Fig. 4 we plotted the error against the number of iterations.

o Burgers up 1o t = 1000, 34 points, viscosity = 0.001
T T T

L2 Error

1 L 1
0 0.5 1 1.5 2 25 3
Iterations x 10

FIG.4. L2errorforBurgerswith =0.001 and 34 points. The lines representing SCM and NLG are coincide!
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Solution for the homogeneous Burgers equation with viscosity = 0.001
0.06 T T T T T T

0.05 -

0.04

U(x,100)
o
>
w
.

0.02 | 4

0.01F ]

FIG. 5. Solution for the homogeneous Burgers at100. Lines for SCM and NLG are coincident.

For a more realistic test, where one does not control which modes are, or are not, pr
in the numerical simulation, we consider Eq. (29) in its homogeneous form, i.e.f witd,
and compare how both methods recover the classical sinusoidal shape of its solution
the Gaussian-like initial condition

Up = —100(x—7)?2
whenv =0.001 att =100. In this case a grid with 66 points was used in order to ha
sufficient spatial resolution to capture the steep gradients from the solution. The valu
CFL=0.01 still yielded stability. Once more the same numerical solutions were obtait
and both are shown in Fig. 5.

The experiment for the Reaction-Diffusion equations (34) and (35) consists in conside
an oscillatory exact solution of the form

u(x, t) = coqt) cogx),

with the corresponding forcing term determined by it. The numerical solutions w
computed up td =1 using the parameters valu€$L=0.01 andv =0.001. Figure 6
and Table 3 show that we achieved the same quality of results as for the Burgers equi
i.e., the NLG splitting generates the same numerical solution as the SCM.

TABLE 3
L? Error for the Reaction-Diffusion Equation

Pts SCM NLG Order
18 2.685663324028776E-006 2.685663324295888E-006
30 4.009815791896255E-008 4.009815786416866E-008 411
42 2.702694205085399E-009 2.702694304005631E-009 4.00
90 5.936846844181185E-012 5.936861229501006E-012 4.01

126 4.075862407295771E-013 4.076214398280533E-013 4.28
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Reaction-Diffusion at t = 1 and visc = 0.001

10
10° F .
-7
107 F E
10° | E
5
TRT J
b
lo"": -
10" E
10" |
‘o-lﬂ i
10’ 10° 10°

MNumber of points

FIG.6. L2 errors for the Reaction-Diffusion equation.SCM; o, NLG.
For the case of 2 dimensions in space we consider Eq. (36) with an exact solution o
form
u(x t) — e_te_AO((X_”)ZJF(y_ﬂ)Z).
As before, this function provides a natural energy distribution throughout its spectrum \

low modes carrying most of the energy, but still keeping the importance of the high mo
for the accuracy of the numerical solution. We integrated (36) and (37) tp-tb with

Burgers 20 att = 1 and visc = 0.01
107 T

L2 Error

10' 10° 10°
Number of points

FIG. 7. L2 errors for Burgers 2D witly = 0.001 att = 1. ¥, SCM; o, NLG.
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TABLE 4
L2 Error for the 2D Burgers Equation

Pts SCM NLG Order
22 8.635929773499972E-004 8.635929773499946E-004
42 4.173275481643102E-004 4.173275481643098E-004 0.56.
74 2.889167206302692E-005 2.889167206302680E-005 2.35
78 1.950972747131406E-005 1.950972747131406E-005 3.72
82 1.272719803347214E-005 1.272719803347162E-005 4.27!
90 5.299905987531454E-006 5.299905987532374E-006 4.70
102 1.288118941678376E-006 1.288118941678128E-006 5.65
122 3.403030329596673E-008 3.403030329609838E-008 10.14

v=0.01 andCFL=0.01. Figure 7 shows the norm of tHe error plotted against the
number of points. Note that convergence is poor at the lower number of points wher
grid is not fine enough to solve the steep gradients generated by the Gaussian solutio
forcing terms. The refinement of the grid improves its ability to capture those gradie
and leads to the fourth order convergence of the Runge—Kutta for the intermediate ve
of number of points, as we can see in Table 4. The further refinement of the grid yiels
super-convergence order wham becomes small enough so that the spatial errors start
dominate. Nonetheless, the NLG splitting solution was the same as the SCM under a
different situations above described.

6. CONCLUSIONS

In this article a Nonlinear Galerkin type splitting in the case of a Fourier pseudospec
discretization in spatial dimension 2 was introduced and some of its humerical feat
as spatial precision and computational costs were analyzed by means of the Burger
Reaction-Diffusion equations in 1 and 2 spatial dimensions.

From the numerical experiments here presented we conclude that the NLG splittir
high and low modes is a very attractive technique in solving partial differential equations
a pseudospectral discretization. It maintains the spatial precision and the computationa
of the standard method while opening the way to the application of more refined treatm
that distinguishes between high and low energy quantities.

It clearly deserves further study with respect to its application to more realistic proble
and the use of different basis of functions as the Chebyshev and Legendre ones. In subst
works we will explore the NLG feature of distinguishing between low and high modes ¢
also its potential for easy parallelization and reduction of the roundoff error.
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